p-adic Hodge theory homework: Week 3

- 1. [Sil] exercise 7.5a.
- 2. Verify that for any $a, b \in \mathbb{Q}_2$,

$$|a^{2} + b^{2}|^{1/2} = \max(|a + b|, |2|^{1/2}|b|),$$

and that the function

$$a + bi \mapsto |a^2 + b^2|^{1/2}$$

defines an absolute value on $\mathbb{Q}_2(i)$. Verify that the residue field of $\mathbb{Q}_2(i)$ is \mathbb{F}_2 .

- 3. In this problem, we will use the Néron-Ogg-Shafarevich criterion to show that the elliptic curve E defined by $y^2 = x^3 x$ does not have good reduction at the prime 2.
 - (a) Over the field $\mathbb{Q}_2(i)$, E has an action by the ring $\mathbb{Z}[i]$, where the action of i is given by $(x, y) \mapsto (-x, iy)$. Use the previous exercise to argue that $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2(i))$ does not contain the inertia subgroup of $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$. In other words, the extension $\mathbb{Q}_2(i)/\mathbb{Q}_2$ is ramified.
 - (b) Let ℓ be a prime. Both $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$ and $\mathbb{Z}[i]$ act on $T_{\ell}(E)$. Argue that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$, $\sigma i = (\sigma(i))\sigma$ as endomorphisms of $T_{\ell}(E)$.
 - (c) Argue that the kernel of the action of $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2)$ on $T_{\ell}(E)$ must be contained in $\operatorname{Gal}(\overline{\mathbb{Q}}_2/\mathbb{Q}_2(i))$. Take $\ell \neq 2$, and use the Néron-Ogg-Shafarevich criterion to conclude that E does not have good reduction.