p-adic Hodge theory homework: Week 13

- 1. [Mie] problem 4.8.
- 2. (a) Let K be a perfectoid field of characteristic zero. Let $\widetilde{\mathbb{G}_{m,K}}$ be the functor that sends a perfectoid Huber pair (R, R^+) over (K, \mathcal{O}_K) to $1 + (R^{\flat})^{\circ \circ}$. Show that $\widetilde{\mathbb{G}_{m,K}}$ is representable by a perfectoid space.
 - (b) Show that the map $\widetilde{\mathbb{G}_{m,K}} \to \mathbb{A}^1_K$ sending $z \in 1 + (\mathbb{R}^{\flat})^{\circ\circ}$ to $\log(z^{\sharp})$ induces a surjection of pro-étale sheaves $(\widetilde{\mathbb{G}_{m,K}})^{\flat} \to (\mathbb{A}^1_K)^{\Diamond}$.
- 3. Let C be an algebraically closed perfectoid field of characteristic p.
 - (a) Show that $(1 + \mathfrak{m}_C)^{\times}$ has a natural \mathbb{Q}_p -vector space structure.
 - (b) Let C^{\sharp} be a characteristic unzero until of C. The \sharp map induces a group homomorphism $(1 + \mathfrak{m}_C)^{\times} \to (1 + \mathfrak{m}_{C^{\sharp}})^{\times}$. Show that the preimage of the group of *p*-power roots of unity $\mu_{p^{\infty}}(C^{\sharp})$ is a onedimensional \mathbb{Q}_p -vector subspace of $(1 + \mathfrak{m}_C)^{\times}$.
 - (c) Conversely, show for every one-dimensional \mathbb{Q}_p -vector subspace V of $(1 + \mathfrak{m}_C)^{\times}$, there is an untilt C^{\sharp} such that $\sharp(V) = \mu_{p^{\infty}}(C^{\sharp})$. Further show that C^{\sharp} is unique up to isomorphism, and the map $(C^{\sharp})^{\flat} \xrightarrow{\sim} C$ is unique up to composing with a power of Frobenius. (Hint: use the fact that C^{\sharp} must contain $\mathbb{Q}_p^{\text{cyc}}$, and $(\mathbb{Q}_p^{\text{cyc}})^{\flat} \cong \mathbb{F}_p((t^{1/p^{\infty}}))$.)